Decoding vectorial information from a gradient: sequential roles of the receptors Frizzled and Notch in establishing planar polarity in the Drosophila eye.
نویسندگان
چکیده
The Drosophila eye is composed of several hundred ommatidia that can exist in either of two chiral forms, depending on position: ommatidia in the dorsal half of the eye adopt one chiral form, whereas ommatidia in the ventral half adopt the other. Chirality appears to be specified by a polarizing signal with a high activity at the interface between the two halves (the 'equator'), which declines in opposite directions towards the dorsal and ventral poles. Here, using genetic mosaics, we show that this polarizing signal is decoded by the sequential use of two receptor systems. The first depends on the seven-transmembrane receptor Frizzled (Fz) and distinguishes between the two members of the R3/R4 pair of presumptive photoreceptor cells, predisposing the cell that is located closer to the equator and having higher Fz activity towards the R3 photoreceptor fate and the cell further away towards the R4 fate. This bias is then amplified by subsequent interactions between the two cells mediated by the receptor Notch (N) and its ligand Delta (Dl), ensuring that the equatorial cell becomes the R3 photoreceptor while the polar cell becomes the R4 photoreceptor. As a consequence of this reciprocal cell fate decision, the R4 cell moves asymmetrically relative to the R3 cell, initiating the appropriate chiral pattern of the remaining cells of the ommatidium.
منابع مشابه
Asymmetric Localization of Frizzled and the Determination of Notch-Dependent Cell Fate in the Drosophila Eye
BACKGROUND During patterning of the Drosophila eye, a critical step is the Notch-mediated cell fate decision that determines the identities of the R3/R4 photoreceptor pair in each ommatidium. Depending on the decision taken, the ommatidium adopts either the dorsal or ventral chiral form. This decision is directed by the activity of the planar polarity genes, and, in particular, higher activity ...
متن کاملRegulation of Frizzled by Fat-like Cadherins during Planar Polarity Signaling in the Drosophila Compound Eye
Planar polarity is evident in the coordinated orientation of ommatidia in the Drosophila eye. This process requires that the R3 photoreceptor precursor of each ommatidium have a higher level of Frizzled signaling than its neighboring R4 precursor. We show that two cadherin superfamily members, Fat and Dachsous, and the transmembrane/secreted protein Four-jointed play important roles in this pro...
متن کاملTemporal Regulation of Planar Cell Polarity: Insights from the Drosophila Eye
In this issue of Cell, identify a first regulatory link between planar cell polarity (PCP) signaling and apical-basal polarity. The authors propose that a component of the apical Crumbs complex regulates the phosphorylation of the Frizzled (Fz) PCP receptor, thus modulating PCP in the Drosophila eye.
متن کاملStructure–Function Dissection of the Frizzled Receptor in Drosophila melanogaster Suggests Different Mechanisms of Action in Planar Polarity and Canonical Wnt Signaling
Members of the Frizzled family of sevenpass transmembrane receptors signal via the canonical Wnt pathway and also via noncanonical pathways of which the best characterized is the planar polarity pathway. Activation of both canonical and planar polarity signaling requires interaction between Frizzled receptors and cytoplasmic proteins of the Dishevelled family; however, there has been some dispu...
متن کاملEpithelial planar polarity in the developing Drosophila eye.
Experiments with the insect ectoderm have suggested that planar polarity in epithelia results from the local orientation of cells to the slope of a gradient of positional information. Here we show that planar polarity in the Drosophila eye is inverted when the morphogenetic wave that sweeps through the presumptive retinal epithelium is induced to move in the reverse direction. We suggest that t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Development
دوره 126 24 شماره
صفحات -
تاریخ انتشار 1999